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Abstract

Olaquindox (OLA) has been widely used as an animal feed additive in China for

decades; however, its toxicity and toxic mechanisms have not been well investigated.

In this study, the developmental neurotoxicity and toxic mechanisms of OLA were

evaluated in zebrafish. Zebrafish embryos were exposed to different concentrations

of OLA (25–1,000 mg/L) from 6 to 120 hours post fertilization (hpf). OLA exposure

resulted in many abnormal phenotypes in zebrafish, including shortened body length,

notochord degeneration, spinal curvature, brain apoptosis, damage of axon and

peripheral motor neuron, and hepatotoxicity. Interestingly, OLA increased zebrafish

spontaneous tail coiling, while reduced locomotor capacity. Quantitative polymerase

chain reaction (Q-PCR) showed that the expression levels of nine marker genes for

nervous system functions or development, namely, α1-tubulin, glial fibrillary acidic

protein (gfap), myelin basic protein (mbp), synapsinII a (syn2a), sonic hedgehog a

(shha), encoding HuC (elavl3), mesencephalic astrocyte-derived neurotrophic factor

(manf ) growth associated protein 43 (gap43), and acetylcholinesterase (ache) were all

down-regulated significantly in zebrafish after treated with OLA. Besides, the anti-

apoptotic and pro-apoptotic genes bcl-2/bax ratio was reduced. These results show

that OLA exposure could cause severe developmental neurotoxicity in the early

stages of zebrafish life and OLA might induce neurotoxicity by inhibiting the expres-

sion of neuro-developmental genes and promoting apoptosis.
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1 | INTRODUCTION

Olaquindox (OLA), N-(2-hydroxyethyl)-3-methyl-2-quino-

xalincarboxamide-1,4-dioxide, is a synthetic veterinary drug of

quinoxalines that is used as an antibacterial agent and feed additive to

treat bacterial infections and promote animal growth since the 1970s.

However, due to its severe side effects in mutagenicity (Yoshimura,

Nakamura, Koeda, & Yoshikawa, 1981), fertility (Gandalovicova &

Sykora, 1986), allergy (Belhadjali et al., 2002), genotoxicity

(Nunoshiba & Nishioka, 1989), and cytotoxicity (Cihak & Srb, 1983),

the Commission of the European Community has forbidden the appli-

cation of OLA as an animal growth promoter in 1999 (Song

et al., 2011). However, OLA was widely used in China as an animal

feed additive and an animal growth promoter until banned in 2018.

Long-time abuse of OLA has polluted the animal-derived food prod-

ucts and water sources, and high dosages of OLA applied to livestock

and poultry could result in residual problem in animal body, which

eventually could pose a great threat to human health (Pei et al., 2016).

According to the regulations of the Ministry of Agricultural and Rural

Affairs of China, the maximum residue limit (MRL) of OLA in porcine
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muscle is set at 4 μg/kg and in porcine liver at 50 μg/kg (Li, Dai, Yang,

Wang, & Tang, 2017).

As a general rule, drugs administered by oral route are slowly

absorbed and excreted with feces. Thus, animal wastes from intensive

farming contain antibiotics in active form (Migliore et al., 1996).

Wastes from terrestrial animals are often used for field manuring, and

nearly all of the acquaculture animals excrete into water environment

directly. As a result, 70%–80% of antibacterials end up in the environ-

ment (Wollenberger, Halling-Sørensen, & Kusk, 2000). OLA and OLA

residues may therefore leach to surface water in the vicinity of fields

and cause adverse effects to the ecosystem, and its toxicity on alga

has been confirmed (Halling-Sørensen, 2000).

Some previous studies have reported that OLA had accumulative

toxicity, hepatotoxicity, and nephrotoxicity (Wang et al., 2012; Yang

et al., 2015; Zhou, Li, Wang, Ji, & Zhu, 2015). A long-term toxicity

study of OLA in rats, pigs, and beagle dogs showed the toxic effects in

liver, kidney, testes, ovaries, and endocrine glands (Fang et al., 2006).

Chronic exposure could result in the accumulation of OLA in the liver

and kidney of carp, leading to the liver and kidney lesions and thus

metabolism and excretion disorders (Yang et al., 2018). Another study

also confirmed that OLA would induce fatty or vacuolar degeneration

of liver cells in common carp (Wang, Zhao, Yi, Huang, & Liu, 2004). In

addition, several studies showed that exposure to OLA could induce

apoptosis in HepG2 cells (Li, Dai, Yang, Wang, & Tang, 2017; Zou

et al., 2011). However, no studies have been done to systematically

evaluate the neurotoxicity of OLA in animals yet.

Though rodents that have been widely used have significant con-

tribution to our understanding of developmental neurotoxicity

(Aoyama, 2012; Crofton, Mundy, & Shafer, 2012; Kuwagata, 2012;

Tsuji & Crofton, 2012), experiments using large numbers of rodents

are time consuming, expensive, and raise ethical concerns. Using non-

mammalian animals as alternative models may relieve some of these

pressures by allowing for testing large numbers of subject while

reducing expenses and minimizing the use of mammals (Bal-Price

et al., 2012; Crofton, Mundy, & Shafer, 2012).

Zebrafish (Danio rerio) has become an important tool in develop-

mental neurobiology (Bailey, Oliveri, & Levin, 2013; de Esch, Slieker,

Wolterbeek, Woutersen, & de Groot, 2012; Nishimura et al., 2015).

There are high similarities in the nervous system development

between zebrafish and mammals (Appel, 2000; Guo, 2004;

Guo, 2009; Hjorth & Key, 2002; Schmidt, Strahle, & Scholpp, 2013;

Tropepe & Sive, 2003). Zebrafish has homologous basic processes of

neurodevelopment with those occurring in humans (Tropepe &

Sive, 2003), and visualization of several key players (neurons and axon

tracts) and monitoring of processes (motoneuron activity) of the ner-

vous system in zebrafish are possible (Sukardi, Chng, Chan, Gong, &

Lam, 2011; Ton, Lin, & Willett, 2006). Many transgenic lines

expressing fluorescent proteins in specific neuronal subpopulations

have been developed and are available through public resources (Sato,

Takahoko, & Okamoto, 2006). These transgenic zebrafish, combined

with high content imaging technologies (Higashijima, Hotta, &

Okamoto, 2000; Mikut et al., 2013), can provide relatively high-

throughput developmental neurotoxicity testing. A number of

laboratories have employed zebrafish to investigate the toxic effects

of chemicals released into the environment on the development of

nervous system, including nanoparticles, pesticides, and various

organic pollutants (Guo et al., 2018; Li et al., 2018; Qian, Liu, Lu, &

Sun, 2018; Shi et al., 2018). Furthermore, Zebrafish have been used

for studying the mechanism of neurotoxicity by detection of neural

developmental, neurochemical, and neurobehavioral changes (Bailey,

Oliveri, & Levin, 2013; Eddins, Cerutti, Williams, Linney, &

Levin, 2010).

The present study was aimed to evaluate the developmental neu-

rotoxicity and toxic mechanisms of OLA in zebrafish systematically

and comprehensively. We found that OLA was highly toxic to

zebrafish embryos; it could induce concentration-dependent adverse

effects in embryonic development, such as shortened body length,

notochord degeneration, spinal curvature, brain apoptosis, damage of

axon and peripheral motor neuron, and hepatotoxicity, it also

increased the spontaneous tail coiling in zebrafish embryos while

decreased locomotor speed in zebrafish larvae. In addition, the

expression levels of nine marker genes for nervous system functions

or development, namely, α1-tubulin, gfap, mbp, syn2a, shha, elavl3,

manf, gapd43, and ache were all down-regulated significantly after

OLA exposure.

2 | MATERIALS AND METHODS

2.1 | Zebrafish care and maintenance

Three lines of zebrafish were used in this study: wild-type AB strain

zebrafish (D. rerio), Tg (NBT:MAPT-GFP)zc1, and Tg (Isl1:CMICP-GFP)

transgenic zebrafish. All the zebrafish strains used in this study were

obtained from the Institute of Hydrobiology, Chinese Academy of Sci-

ences (Wuhan, China). Zebrafish were housed in a light- and

temperature-controlled aquaculture facility with a standard 14:10 h

light:dark photoperiod and fed with live brine shrimp twice daily and

dry flake once a day. To obtain zebrafish larvae, four to five pairs of

zebrafish were set up for natural mating every time. On average,

200–300 embryos were generated per pair. Embryos were maintained

at 28�C in fish water (0.02% Instant Ocean salt in deionized water,

pH 6.9–7.2, conductivity 480–510 μS/cm, and hardness

53.7–71.6 mg/L CaCO3). The embryos were washed and staged at

6 and 24 hpf. The zebrafish facility at Hunter Biotechnology, Inc. is

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC) International (Zhu et al., 2016) and

by the China National Accreditation Service for Conformity Assess-

ment (CNAS) and China Inspection Body and Laboratory Mandatory

Approval (CMA).

2.2 | Chemicals and reagents

OLA (C12H13N3O4, MW 263.25, CAS NO.23696-28-8, purity ≥98%)

was supplied by the China Institute of Veterinary Drug Control
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(Beijing, China). OLA was dissolved in dimethyl sulfoxide (DMSO,

Sigma, St. Louis, MO, USA), and stock solutions were prepared in fish

water with a final DMSO concentration of 0.1% (v/v). Stocks were

stored at −20�C in the dark. Acridinium chloride hemi-(zinc chloride)

(AO) were purchased from Sigma-Aldrich. TRIzol reagent, reverse

transcriptase kit and the SYBR Green system were purchased from

Takara (Dalian, China).

2.3 | Developmental toxicity assessment

Thirty wild-type AB strain zebrafish embryos were distributed into

6-well microplates (Nest Biotechnology Co., Ltd, Shanghai, China)

in 3ml fresh fish water per well. Zebrafish embryos were exposed

to OLA continuously at nominal concentrations of 25, 50,

100, 200, 300, 500, and 1,000 mg/L from 6 to 120 hpf, respec-

tively. Zebrafish treated with fish water were used as untreated

control. exposure of OLA, zebrafish were observed under the ste-

reomicroscope (SZX7, OLYMPUS, Japan) at 24, 28, 72, 96, and

120 h posttreatment (hpt). The effect of OLA on embryonic sur-

vival, hatching, and morphological development was assessed. Dead

zebrafish were recorded and promptly removed from the solution

during observations. The embryonic hatching rate was counted at

48 and 72 hpf. The abnormal phenotypes were determined by

examining 5-day postfertilization (dpf) larvae under a stereomicro-

scope, including the following endpoints: pericardial and body

edema, abnormalpigmentation, size of eye, body length, heart,

head, tail, otoliths and muscle deformation, absence of liver and

intestine, and bleeding. At the end of experiments, all the zebrafish

were anesthetized with 0.25 g/L tricaine methanesulfonate, which

conforms to the American Veterinary Medical Association (AVMA)

requirements for euthanasia by anesthetic (Shen et al., 2015).

2.4 | Developmental neurotoxicity assessment

2.4.1 | Brain apoptosis

Thirty wild-type AB strain zebrafish embryos were treated with

OLA at concentrations of 25, 50, 100, 200, and 300 mg/L from

6 to 24 hpf. After treatment, zebrafish from each group were

washed with fish water three times, then stained with 2.5 mg/L

acridine orange (AO) in fish water for 30 min. Next, zebrafish were

rinsed thoroughly in fish water three times and observed for apo-

ptotic cells that would display yellow-green fluorescent spots in

the brain and spinal cord under a stereo fluorescence microscope

(AZ100, Nikon, Japan). In order to determine the fluorescence

intensity in brain regions, fluorescence signal (S) of apoptotic cells

in the brain was measured with Nikon NIS-Elements D 3.10

Advanced image processing software. The induction percentage of

brain apoptosis in zebrafish treated with OLA was calculated based

on the following formula: induction percentage of apopto-

sis = [S (OLA) − S (Control)]/[S (Control)] × 100%.

2.4.2 | Axon damage

Thirty Tg (Isl1:CMICP-GFP) transgenic zebrafish embryos that express

green fluorescent protein (GFP) in the cranial motor neurons and cra-

nial sensory neurons (Higashijima, Hotta, & Okamoto, 2000) were

treated with OLA at concentrations of 25, 50, and 100 mg/L from

6 to 72 hpf. After treatment, 10 zebrafish from each group were ran-

domly selected, and images of the central nerve were acquired using a

stereo fluorescence microscope. Qualitative analysis of image was

performed using image-based morphometric analysis.

2.4.3 | Peripheral motor neurons damage

Thirty Tg (NBT:MAPT-GFP)zc1 transgenic zebrafish embryos in which

the GFP was integrated into the gene sequence of beta tubulin were

treated with OLA at concentrations of 25, 50, and 100 mg/L from

6 to 72 hpf. After treatment, 10 zebrafish from each group were ran-

domly selected, and images were acquired under fluorescent stereo-

microscope. The length (L) of motor neuron in zebrafish was

calculated by NIS-Elements D3.10. The reduction percentage of

peripheral motor neuron length in zebrafish treated with OLA was cal-

culated based on the following formula: reduction percentage of

peripheral motor neuron length = [L (Control) − L (OLA)]/

[L (Control)] × 100%.

2.4.4 | Spontaneous tail coiling evaluation

Thirty wild-type AB strain zebrafish embryos were treated with OLA

at concentrations of 25, 50, 100, 200, 300, 500, and 1,000 mg/L from

24 to 25 hpf. After treatment, tail coilings of embryos during 1 min

were detected with a high-resolution camera mounted on a stereomi-

croscope. Ten embryos in each group were selected and detected

randomly.

2.4.5 | Behavioral toxicity

Thirty wild-type AB strain embryos were treated with OLA at concen-

trations of 25, 50, and 100 mg/L from 6 to 120 hpf. The locomotor

activity was quantified by a Video-Track system (Viewpoint Life Sci-

ence, Lyon, France). Living larvae was selected and loaded into a

96-well microplate with a single animal in each well. Before monitor-

ing, zebrafish acclimated in the 96-wells at 28�C for 10 min. The

swimming patterns of zebrafish under continuous dark (60 min) were

first recorded, and then under light-to-dark transition (5-min dark,

5-min light, 5-min dark, and 5-min light). Shortly after behavior

recording, larvae were inspected under a stereomicroscope; any possi-

ble dead or malformed individuals were identified and their data

would be excluded from further statistical analyses. Data were ana-

lyzed following the method described in our previous article (Huang

et al., 2016). The reduction percentage of total distance (D) of
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zebrafish treated with OLA under continuous dark was calculated

based on the following formula: reduction percentage of total dis-

tance = [D (Control) − D (OLA)]/[D (Control)] × 100%. Based on total

distance and time spent, the average swimming speed (mm/s) was cal-

culated and was used to analyze if the swimming activity of zebrafish

would be different between the dark and light.

2.4.6 | Gene expression analysis

Based on the previous tests, Zebrafish embryos at 6 hpf were exposed

to 25, 50, and 100 mg/L OLA until 120 hpf, 30 embryos in each

group. After OLA treatment, the total RNA of zebrafish in every group

was extracted using TRIzol reagent (Invitrogen Life Technologies). The

quality of RNA in each sample was verified by measuring the

260/280 nm ratio. A 2 μg of RNA from each sample was used to syn-

thesize using FastQuant RT Kit (with gDNase) (Tiangen). Quantitative

polymerase chain reaction (Q-PCR) amplifications were carried out

with a CFX Connect detection system (Bio-Rad) using iTaq Universal

SYBR Green Supermix (Bio-Rad) in triplicate. The PCR protocol used

was 2 min at 95�C, 40 cycles of 5 s at 95�C, and 30 s at 60�C. Key

marker genes of α1-tubulin, glial fibrillary acidic protein (gfap), myelin

basic protein (mbp), synapsinII a (syn2a), sonic hedgehog a (shha),

encoding HuC (elavl3), mesencephalic astrocyte-derived neurotrophic

factor (manf ) growth associated protein 43 (gap43), and ache were

determined of the embryos at 120 hpf. These genes are of importance

to the developmental neurotoxicity and are believed to be responsive

to chemical exposure as previously reported (Wang, Lam, et al., 2015;

Wang, Yang, et al., 2015). The mRNA levels of the bcl-2 and bax were

also evaluated of the embryos at 24 hpf, These genes are involved in

apoptosis pathway. The primer sequences of genes were obtained as

previously described (Table 1) (Guo et al., 2018). Melt curve analysis

was used to confirm primer specificity. Melt curve analysis was used

to confirm primer specificity. Expression data were normalized against

the expression of β-actin, having a stable expression in all treatments.

The relative expression levels of genes among groups were calculated

using the 2-ΔΔCt method (Sharif, Steenbergen, Metz, &

Champagne, 2015). Three biological replicates were performed for

each sample.

2.5 | Statistical analysis

Statistical analyses were performed with one-way ANOVA and

Dunnett's test using the SPSS 16.0 software (SPSS, USA). All data

were shown as the mean ± standard error (SE), and p < 0.05 was con-

sidered statistically significant. All figures were generated by Gra-

phPad Prism 5.0 Software (GraphPad, Inc., San Diego, CA, USA).

3 | RESULTS

3.1 | Developmental toxicity

The hatching rate was decreased as the OLA concentration increases.

A total of 40% of embryos hatched in the normal control whereas no

one hatched in 200, 300, 500, and 1,000 mg/L OLA at 48 hpf, respec-

tively (Figure 1A). Embryo death occurred in 200, 300, 500, and

1,000 mg/L treatment groups, with mortality of 100 at 72 hpf of all

these groups (Figure 1B). Morphologic abnormalities increased in a

dose-dependent manner. No morphological abnormality was observed

in embryos in 25 mg/L group. However, body length reduction, noto-

chord degeneration, severe spinal curvature, and hepatotoxicity were

observed in the 50 and 100 mg/L groups. Compared with the control

group, the body length declined (9.92 ± 2.25)% and (18.61 ± 3.04)% in

50 and 100 mg/L groups (p < 0.05, p < 0.001), respectively

(Figure 1C). Besides, notochord degeneration was obviously increased

as OLA concentration increased; the incidence was 40% in 50 mg/L

and 100% in 100 mg/L. Liver degeneration and yolk sac retention rate

were 100% in 100 mg/L groups. The representative phenotype fig-

ures of zebrafish treated with OLA at various concentrations in differ-

ent stages were presented in Figure 1D.

3.2 | Developmental neurotoxicity

3.2.1 | Brain apoptosis

Apoptotic cells in the brain of zebrafish embryos in each group were

revealed by AO staining, which could reveal chemical-induced apopto-

sis in nervous system. No obvious apoptotic cells were observed in

zebrafish larvae of the control group at 24 hpf, whereas apoptotic

cells in higher concentrations of OLA-treated groups were apparent,

mainly around the head area and spinal cord, with bright green fluo-

rescent spots (Figure 2A,B). The induction percentages of apoptosis

were (2.85 ± 2.59)%, (4.57 ± 3.99)%, (30.03 ± 8.97)%,

(64.53 ± 8.96)%, and (69.40 ± 11.48)% at 25, 50, 100, 200, and

300 mg/L of OLA, respectively, and statistically significant difference

TABLE 1 Sequences of primer pairs used in the real-time
quantitative polymerase chain reaction (PCR) reactions

Gene Forward (50–30) Reverse (50–30)

β-actin tcgagcaggagatgggaacc ctcgtggataccgcaagattc

bax gacttgggagctgcacttct tccgatctgctgcaaacact

bcl-2 cactggatgactgactacctgaa cctgcgagtcctcattctgtat

ache ccctccagtgggtacaagaa gggcctcatcaaaggtaaca

mbp aatcagcaggttcttcggaggaga aagaaatgcacgacagggttgacg

a1-tubulin aatcaccaatgcttgcttcgagcc ttcacgtctttgggtaccacgtca

shha gcaagataacgcgcaattcggaga tgcatctctgtgtcatgagcctgt

elavl3 gtcagaaagacatggagcagttg gaaccgaatgaaacctacccc

gap43 tgctgcatcagaagaactaa cctccggtttgattccatc

syn2a gtgaccatgccagcatttc tggttctcactttcacctt

manf agatggagagtgtgaagtctgtgtg caattgagtcgctgtcaaaacttg

gfap ggatgcagccaatcgtaat ttccaggtcacaggtcag

4 GUO ET AL.



was observed at 100, 200, and 300 mg/L (p < 0.05 or 0.001) as com-

pared with the control group, respectively (Figure 2C). We also

assessed the apoptosis-related gene (bax and bcl-2) expression level in

OLA-exposed embryos. The expression of pro-apoptotic gene bax

was significantly up-regulated in zebrafish exposed to 200 and

300 mg/L OLA at 24 hpf (p < 0.001 for both).(Figure 2D). Meanwhile,

the expression of anti-apoptotic gene bcl-2 in the 100, 200, and

300 mg/L OLA-treated group was down-regulated compared with

control (p < 0.001 for all) (Figure 2E). Thus, the bcl-2/bax ratio

decreased after OLA exposure, especially in the higher OLA concen-

trations (100, 200, and 300 mg/L) (Figure 2F). These results strongly

suggested that OLA induced acute cell apoptosis.

3.2.2 | Axon and peripheral motor neuron damage

No morphological abnormality of axon or peripheral motor neuron

was observed in embryos from control groups. As shown in Figure 3A,

F IGURE 1 Effects of different concentrations of olaquindox (OLA) on developmental parameters. (A) Hatching rate of embryos at 48 h post
fertilization (hpf), (B) mortality of larvae at 120 hpf, (C) body length of larvae at 120 hpf. (D) Morphological effect of OLA on zebrafish during the
exposure at 24–120 hpf. D, death; LD, liver degeneration; ND, notochord degeneration; SBL, short body length; SC, spinal curvature; TM, tail
malformation. Data are expressed as mean ± standard error (SE). Compared with control group: *p < 0.05, ***p < 0.001
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severe degeneration of peripherally projecting axons from the facial

sensory ganglion cells was found in Tg (Isl1:CMICP-GFP) transgenic

zebrafish at 100 mg/L OLA.

Also, peripheral motor nerves were observed to be bent and

shorter in Tg (NBT:MAPT-GFP)zc1 transgenic zebrafish (Figure 3B)

exposed to OLA in a dose-dependent manner; the reduction percent-

ages of peripheral motor neuron length were (0.64 ± 2.50)%,

(7.74 ± 1.60)%, and (18.82 ± 1.13)% at 25, 50, and 100 mg/L OLA,

respectively. Statistically significant reduction was demonstrated in

zebrafish treated with OLA at 50 and 100 mg/L (p < 0.01, p < 0.001)

(Figure 3C).

3.2.3 | Spontaneous tail coiling

The spontaneous tail coilings of embryos were significantly increased

in a dose-dependent manner after exposed to OLA (Figure 4A). The

spontaneous tail coilings were (9.30 ± 0.58), (10.90 ± 1.11),

F IGURE 2 (A) Apoptosis in the brain of zebrafish larvae induced by olaquindox (OLA)-treated groups at concentrations of 100, 200, and
300 mg/L at 24 h post fertilization (hpf). (B) Apoptotic cells appeared around the head area and spinal cord. (C) The induction percentage of
apoptosis in the brain regions. Relative expression levels of bax (D), bcl-2 (E), bcl-2/bax ratio (F) in zebrafish after exposure to various
concentrations of OLA for 24 h. Data are expressed as mean ± standard error (SE). Compared with control group: *p < 0.05, ***p < 0.001
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(13.40 ± 0.67), and (22.40 ± 1.49) times per minute in 200, 300,

500, and 1,000 mg/L of OLA-treated groups, respectively, compared

with (4.60 ± 0.54) times per minute in the control group (p < 0.001 for

all). OLA bellow 200 mg/L had no significant effect on zebrafish spon-

taneous tail coiling.

3.2.4 | Behavioral toxicity

Locomotor activity was evaluated in larvae at 120 hpf. Larvae treated

with OLA (25, 50, and 100 mg/L) under continuous dark showed sig-

nificant decrease in total movement distance compared with control,

the reduction percentages of total distance were (43.49 ± 7.27)%,

(52.32 ± 10.67)%, and (89.09 ± 5.68)% (p < 0.01 or 0.001), respec-

tively (Figure 5A,5B). Zebrafish exposed to OLA also exhibited a sig-

nificant decrease in average swimming speed and would speed down

when the photoperiod shifted from dark to light (Figure 5C). Statisti-

cally significant deceleration was obeserved in zebrafish treated with

OLA during the first and second dark phase (25, 50, and 100 mg/L:

p < 0.001 for all the three), the first light period (50 and 100 mg/L:

p < 0.001 for both) and the second light period (100 mg/L: p < 0.001),

relative to control (Figure 5D).

3.2.5 | Mechanisms of developmental neurotoxicity

The mRNA level of genes related to the neuro-development was

examined by q-PCR in zebrafish after OLA exposure at 120 hpf,

including the expression of α1-tubulin, gfap, mbp, syn2a, shha, elavl3,

manf, gapd43, and ache. Down-regulation of elavl3 (0.74-, 0.80-, and

0.53-fold, p < 0.001, respectively), gapd43 (0.86-, 0.74-, and 0.52-fold,

p < 0.001, respectively), and gfap (0.89-, 0.77-, and 0.45-fold,

p < 0.001, respectively) was observed in both 25, 50, and 100 mg/L

exposure groups. The transcription of α1-tubulin and shha was signifi-

cantly down-regulated by 0.72- (p < 0.05) and 0.68-fold (p < 0.001)

respectively in the 50 mg/L group and by 0.34- and 0.54-fold

(p < 0.001 for both) respectively in the 100 mg/L group. And, ache

(0.34-fold, p < 0.001) mbp (0.41-fold, p < 0.001), manf (0.61-fold,

p < 0.001) and syn2a (0.52-fold, p < 0.001) were also down-regulated

significantly in 100 mg/L OLA groups (Figure 6).

F IGURE 3 Effect of olaquindox (OLA) on Tg(Isl1:CMICP-GFP) and Tg(NBT:MAPT-GFP)zc1 transgenic zebrafish after exposed for 72 h.
(A) Axons from facial sensory ganglion cells were severely damaged at 100 mg/L in Tg(Isl1:CMICP-GFP) transgenic zebrafish treated with OLA;
(B) peripheral motor neurons: the peripheral nerves were bent and shorter in Tg(NBT:MAPT- GFP)zc1 transgenic zebrafish treated with OLA;
(C) the reduction percentage of peripheral motor neuron length in larvae after exposed to 0, 25, 50, and 100 mg/L of OLA at 72 h post
fertilization (hpf). Data are expressed as mean ± standard error (SE). Compared with control group: **p < 0.01, ***p < 0.001
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4 | DISCUSSION

Zebrafish has been widely used in chemical safety assessment and

ecotoxicity evaluation. In this study, we investigated developmental

toxicity of OLA in zebrafish, mainly focusing on developmental

neurotoxicity, expected to understand more deeply about OLAs

potential effects on human health and ecosystem. We found that

OLA exposure to zebrafish induced brain and central nerve apoptosis,

induced degeneration of axon and peripheral motor neuron, increased

the spontaneous tail coiling but reduced locomotor activity. Pro-

apoptotic gene bax was up-regulated, whereas an array of neuro-

development and functions related genes were down-regulated. As

supported by many earlier studies, the abnormal development of the

central nervous system (CNS) and/or peripheral nervous system (PNS)

was an important contributing factor to the toxic substance-induced

neurotoxicity in the early life stage of zebrafish (Wang, Lam,

et al., 2015; Wang, Yang, et al., 2015; Wu et al., 2016). To the best of

our knowledge, As far as we know, this was the first study to report

the developmental neurotoxicity and the possible mechanisms of OLA

in an animal model.

OLA is known as a potent synthetic antibacterial agent commonly

used in animal feed as a growth promoter. The abuse of OLA as ani-

mal feed additive has polluted the animal-derived food products as

well as soil and water sources. Human health can be affected either

directly through residues of an antibiotic in meat, which may cause

side-effects, or indirectly through selection of antibiotic resistance

determinants that may spread to a human pathogen (Marshall &

Levy, 2011). OLA was found to be cytotoxic and genotoxic to Vero

cells. Reduction in the viability of Vero cells by OLA was significant

and resulted in 78% at 5 μg/ml and 14% at high dose of 80 μg/ml and

OLA-induced DNA damage at 5–15 μg/ml (Chen et al., 2009). In the

current study, OLA induced developmental neutral toxicity as low as

F IGURE 4 The numbers of spontaneous tail coilings were
measured in zebrafish embryos exposed to 25, 50, 100, 200,
300, 500, and 1,000 mg/L of olaquindox (OLA) at 25 h. Data are
expressed as mean ± standard error (SE). Compared with control
group: ***p < 0.001

F IGURE 5 Locomotor behavior of zebrafish larvae at 120 h post fertilization (hpf) post exposure to olaquindox (OLA) was assessed.
(A) Zebrafish movement distance decreased significantly in a dose-dependent manner; (B) Quantitative analysis of total movement distance after
zebrafish exposed to OLA at concentrations of 25, 50, and 100 mg/L; locomotor patterns (C); and average swimming speed (D) during the dark–
light–dark–light photoperiod stimulation test of the zebrafish from the control group and exposure groups were measured. Data are expressed as
mean ± standard error (SE). Compared with control group: *p < 0.05, **p < 0.01, ***p < 0.001
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25 mg/L (μg/ml); the exposure levels were similar to the vitro cell

study.

The developing embryonic brain is more sensitive to perturbation

by toxins than the adult brain in most research of zebrafish (Rice &

Barone, 2000) and mammalians (Costa, Steardo, & Cuomo, 2004; Cro-

fton, Mundy, & Shafer, 2012; Thompson, Levitt, & Stanwood, 2009).

In this study, apoptotic cells were found in the brain and spinal cord

of zebrafish larvae at lower concentrations of OLA without other

abnormal phenotypes, suggesting that the developing brain was very

likely to be a major toxic target. The ratio of bcl-2/bax genes was

decreased upon the treatment with OLA, implying that OLA exposure

might reduce the expression of anti-apoptotic gene bcl-2 and up-

regulate pro-apoptotic gene bax, leading to apoptosis (Li et al., 2016;

Zhu et al., 2015).

Behavior represents the sum of activities controlled by the ner-

vous system, which can reflect the consequences of disruption of

neuronal communications (Moser, 2011). Behavior test is widely used

in neurotoxicity testing of pharmaceutical and environmental

chemicals (Li et al., 2015). The locomotor behavior of zebrafish is con-

sidered to be an important index of neural development and eluci-

dates basic mechanisms underlying neurobehavioral toxicology,

especially since the introduction of automated video tracking systems

(Bailey, Oliveri, & Levin, 2013; Drapeau et al., 2002). Here, we found

that zebrafish embryos exposed to OLA just for 1 hour remarkably

increased the spontaneous tail coiling without abnormal phenotype,

indicating that OLA might cause neural excitation in a short time at

high dose. However, in the locomotor activity tests, we found that

zebrafish movement was significantly reduced after exposure to OLA

for about 120 h at lower concentrations, even at a concentration that

had no adverse effect on morphological development, hinting that

OLA may have subacute or chronic neural inhibitory effect if exposed

at a long time period. The abnormal behavior observed in this study

was considered to represent developmental neurotoxicity caused by

OLA as well as an adaptive response for defensing toxic stress (Chen,

Yu, et al., 2012; Jin et al., 2016). The results were entirely consistent

with previous reports on zebrafish exposed to other toxicants (Guo

et al., 2018; Li et al., 2018; Qian, Liu, Lu, & Sun, 2018; Shi

et al., 2018).

Exposure to OLA caused several other developmental abnormali-

ties at higher exposure levels, such as increased mortality, reduced

hatching rates, and reduced body length. The malformation percent-

ages increased in a time- and concentration-dependent manner in

zebrafish embryos. The most pronounced abnormalities were spinal

curvature, notochord degeneration, and serious hepatotoxicity. These

results suggest that high levels of OLA could induce more extensive

damages on the developing zebrafish, in addition to the developmen-

tal neural toxicity.

Alteration in the expression of a variety of genes related to the

CNS was another important factor that might contribute to develop-

mental neurotoxicity (Chen, Sundvik, Rozov, Priyadarshini, &

Panula, 2012). In this study, we measured and quantified nine marker

genes in the zebrafish exposed to OLA via Q-PCR, that is, α1-tubulin,

gfap, mbp, syn2a, shha, elavl3, manf, gapd43, and ache. The expression

of two cytoskeleton-related genes (α1-tubulin and gfap) was observed

to be significantly decreased. α1-Tubulin encodes an intermediate fila-

ment protein that is of importance in the microtubule cytoskeleton in

the process of developing or regenerating dendrites and axons

(Baas, 1997; Muller et al., 1999). Gfap is a sensitive and reliable astro-

cyte marker and a regulator of the astrocyte cytoskeleton differentia-

tion and is important for many neuronal processes (Nielsen &

Jorgensen, 2003). Mbp and syn2a gene play an important role in mye-

lination and synapse development (Baumann & Pham-Dinh, 2001;

Brosamle & Halpern, 2002; Muller, Bauer, Schafer, & White, 2013).

The lower expression level of mbp gene suggested that exposure to

OLA might affect the function of oligodendrocytes, and further affect

the formation of myelin sheath. On the other hand, syn2a is a neuro-

nal phosphoprotein that binds small synaptic vesicles to induce fur-

ther synaptogenesis in mammals, playing an important role in both

synaptogenesis and neurotransmitter release (Garbarino, Costa,

Pestarino, & Candiani, 2014; Kao et al., 1998). Thus, the down-

regulation of syn2a observed in zebrafish may affect synaptogenesis,

neuronal differentiation, and neurotransmitter release and ultimately

lead to neurobehavioral impairments. Shha is a signaling molecule that

affects the form of nervous system (Muller et al., 1999) and also has

an effect on axonal guidance cues in the spinal cord commissural

axons and retinal ganglion cell axons (Charron, Stein, Jeong,

McMahon, & Tessier-Lavigne, 2003; Ingham & McMahon, 2001;

Kolpak, Zhang, & Bao, 2005). The down-regulated transcription of

shha indicated that OLA might have the potentiality to disturb the

organization of the brain and the formation of organs in other organ

systems (Chen, Huang, et al., 2012; Sun et al., 2016). Elavl3 plays an

important role in the neuronal development and individual behavior

(Okano & Darnell, 1997; Pascale et al., 2004). As elavl3 is an early neu-

ronal marker, its down-regulation is likely a clue that OLA has adverse

effects on developing neurons. Manf can maintain and regulate dopa-

minergic neurons and to direct the dopaminergic precursor cells dif-

ferentiating into mature neurons (Chen, Yu, et al., 2012). Ache is

essential for the development of neurons and muscle in the early life

stage of zebrafish (Behra et al., 2002). Gap43 is integral when

F IGURE 6 Relative expression levels of α1-tubulin, gfap, mbp,
syn2a, shha, elavl3, manf, gap43, and ache in zebrafish after exposure
to various concentrations of olaquindox (OLA) at 120 h post
fertilization (hpf). Data are expressed as mean ± standard error (SE).
Compared with control group: **p < 0.01, ***p < 0.001
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organisms offset the direct damage of toxicants (Alm et al., 2008), and

down-regulation of gap43 mRNA level after OLA exposure might dis-

rupt its function in the process of neurite formation, regeneration, and

plasticity, leading to developmental neurotoxicity in zebrafish larvae.

We found that the expression of all nine marker genes for nervous

system function or development was significantly down-regulated fol-

lowing OLA exposure. These findings indicate that OLA might induce

developmental neurotoxicity through pathways involved in cytoskele-

ton regulation, axon growth, neuron maturation, and nervous system

differentiation.

OLA was reported to reduce the number of intestinal Escherichia

coli and suppressed E. coli-induced immune activation, which might be

responsible for the enhanced E. coli growth in pigs (Ding, Wang,

Zhu, & Yuan, 2006). OLA increased pathogen susceptibility in fish by

inducing gut microbiota dysbiosis (He et al., 2017) and damaged

earthworms and reduced catalase activity (Gao, Sun, Sun, &

Bao, 2007). Our findings derived from this investigation provide valu-

able information for the potential neural health risk of OLA on

humans and animals and could facilitate environmental and ecological

risk assessment of OLA pollution.
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